

Results with CaSO₄,2H₂O omitted

to dicalcium phosphate increases as geometric surface area of the fertilizer increases. Granulation of mixtures of dicalcium phosphate and soluble salts or inert materials increases plant response per unit of P presumably because the geometric surface area has been increased. Results of field experiments reported by Terman *et al.* (8) indicate that mechanical mixing of previously granulated dicalcium phosphate with soluble salts (components in separate granules) is much less effective than granulating mixtures (all components intimately mixed within each granule). On the basis of the results reported here, the granulation of mixtures increases the geometric surface area of the fertilizer, while mechanical mixing of previously granulated components does not influence the geometric surface area of the dicalcium phosphate, which means mechanical mixtures should be inferior to granulated mixtures.

Literature Cited

- (1) Bouldin, D. R., DeMent, J. D., Sample, E. C., J. AGR. FOOD CHEM. 8, 470 (1960).
- (2) Bouldin, D. R., Sample, E. C., Soil Sci. Soc. Am. Proc. 23, 276 (1959).
- (3) *Ibid.*, pp. 281–5.
- (4) Hill, W. L., Proc. Tech. Sessions Bone Char. 1955, 247.
- (5) Kolaian, J. H., Ohlrogge, A. J., Agron. J. 51, 106 (1959).
- (6) Moreno, E. C., Soil Sci. Soc. Am. Proc. 23, 326 (1959).
- (7) Starostka, R. W., Hill, W. L., *Ibid.*, 19, 193 (1955).
- (8) Terman, G. L., Long, O. H., Anthony, J. L., *Farm Chem.* **122**, No. 1, 34 (1959).

Received for review May 8, 1962. Accepted September 13, 1962.

FERTILIZER MATERIALS

Preparation and Characterization of Some Calcium Pyrophosphates

EARL H. BROWN, JAMES R. LEHR, JAMES P. SMITH, and A. WILLIAM FRAZIER

Division of Chemical Development, Tennessee Valley Authority, Wilson Dam, Ala.

Twenty-five calcium pyrophosphates were prepared—eight containing ammonium and 10 containing potassium. Two pairs of dimorphic hydrated calcium pyrophosphates were established, and the compositions and optical and crystallographic properties of the salts were determined. The results will be useful in identifications of pyrophosphates in fertilizers and other mixtures in which they occur.

 $I_{\rm N}^{\rm N}$ water, vitreous calcium polyphosphate (known commercially as calcium metaphosphate) degrades hydrolytically in several stages. There is first formed a sirupy, water-immiscible polymer (coacervate). On standing, the coacervate deposits crystals of calcium pyrophosphates, and in the presence of sufficient water all the solute phosphorus eventually hydrolyzes to orthophosphate. At one stage of the degradation, however, the major phosphate ion is pyrophosphates that are formed in the process have been described briefly (5).

Treatment of the coacervate with ammonia produces crystalline calcium ammonium pyrophosphates. Two of these have been described (6), and both have been found in experimental fertilizers prepared from ammoniated calcium polyphosphate. When greenhouse tests showed these salts to be satisfactory sources of nitrogen and phosphorus for growing plants, further studies were made of the calcium pyrophosphates. Interest in these salts was stimulated by the growing use of condensed phosphates, such as calcium metaphosphate and superphosphoric acid, as fertilizer ingredients.

Twenty-five calcium pyrophosphates have been prepared. Eight of these were calcium ammonium pyrophosphates, and 10 were calcium potassium pyrophosphates. Many of these compounds may be encountered in fertilizers prepared from condensed phosphates or their hydrolysis products. A few of these compounds have been reported previously (2, 4, 7, 10), but their descriptions are incomplete and based mainly on their chemical compositions. The chemical and crystallographic descriptions of these salts will be useful in their identification in fertilizer mixtures.

Techniques

Only those products that were shown by petrographic and x-ray examination to be single-phase crystalline materials were studied further. All the products were shown by paper chromatography to be pyrophosphates. Chemical analyses were made on air-dried samples of most of the products to avoid partial dehydration, and, because of the method of drying, some of the hydrate-water contents, which were determined by difference, are slightly high. Phosphorus was determined spectrophotometrically (8), calcium gravimetrically (14), potassium flame photometrically with lithium as the internal standard, and ammonia by distillation with sodium hydroxide.

The morphological and optical properties of each product were determined with a polarizing microscope. Densities of coarsely crystalline products were determined pycnometrically, and densities of finely crystalline products were calculated from the chemical composition and refractive indices by the Gladstone-Dale relationship (11).

The x-ray diffraction spectra of the products were obtained by the powder wedge technique, with Cu K α radiation and a camera with a diameter of 14.32 cm. Intensities were estimated visually or read from x-ray goniometer tracings. When untwinned, sufficiently large crystals were obtained, single-crystal x-ray studies were made by rotation and Weissenberg techniques to determine the unit-cell constants.

The methods of preparation of the calcium pyrophosphates were developed empirically to yield homogeneous, singlephase, crystalline products suitable for optical and x-ray studies. Subsequent studies, the results of which are being prepared for publication, of portions of multicomponent aqueous systems in which the compounds appear as solid phases showed that the proportions of the reagents could be varied somewhat without changing the compositions of the products. Most of the methods can be scaled up to yield larger quantities of the products.

The pyrophosphate starting materials were prepared in the laboratory. K4-P₂O₇ was prepared by heating K₂HPO₄ at 600° C. for 1 hour. Amorphous calcium pyrophosphate was precipitated by adding CaCl₂ solution to a solution of $Na_4P_2O_7$, but this material was seldom used because it was contaminated with sodium and because considerable care was required to obtain a reactive amorphous precipitate rather than an unreactive crystalline product. $CaH_2P_2O_7$, which was used in the preparation of many of the other calcium pyrophosphates, was prepared by the method described below. All other chemicals were reagent grade.

Table I. Calcium Pyrophosphates

	(Composition, %	$Moles/Mole P_2O_5$			
Compound	$ \begin{array}{ccc} H_2O \\ H_2O_5 \\ (diff.) \end{array} $		H ₂ O (diff.)	CαO	Hydrate H ₂ O	
$Ca_2P_2O_7$, $2H_2O$						
Triclinic dimorph	38.29	48.88	12.83	1.98	2.07	
Monoclinic dimorph	37.16	48.15	14,69ª	1.95	2.40	
Stoichiometric	38.66	48.92	12,42	2.00	2.00	
$Ca_2P_2O_7, 4H_2O$						
Orthorhombic dimorph	34,23	43.22	22.35 ^b	2,00	4.07	
Monoclinic dimorph	. 34.1	43.2	22.70	2.00	4.17	
Stoichiometric	34.39	43.35	22.08	2.00	4.00	
CaH ₉ P ₉ O ₇	25.88	65.56	8.56	1.00	1.03	
Stoichiometric	25.96	65.70	8.34	1.00	1.00	
$Ca_{3}H_{2}(P_{2}O_{7})_{2}, 4H_{2}O$	29.53	52.92	17.55	1.41	2.02	
Stoichiometric	31.03	52.36	16.61	1.50	2.00	
Ca ₃ H ₂ (P ₂ O ₇), H ₂ O	34.02	57.71	8.27	1.49	1.24	
Stoichiometric	34.46	58.16	7.38	1.50	1.00	

^a Coarse crystals had ignition loss of 12.2%. ^b Contained 0.2% K₂O.
^c Coarse crystals had ignition loss of 22.2%.

. . ..

Calcium Ammonium ryrophosphates									
	Composit	Moles/Mole P2O5							
CαO	(NH4)2O	P2O5	H ₂ O (diff.)	CaO	NH4	Hydrate H ₂ O			
$\begin{array}{c} 20.75\\ 20.91\\ 27.26\\ 27.48\\ 32.31\\ 32.36\\ 23.88\\ 24.06\\ 17.88\\ 17.74\\ 13.07\\ 13.10\\ 23.39\\ 22.29\\ 23.76 \end{array}$	$\begin{array}{c} 19.17\\ 19.42\\ 8.41\\ 8.51\\ 6.34^{a}\\ 6.01\\ 10.70\\ 11.17\\ 10.24\\ 10.98\\ 12.26\\ 12.17\\ 5.38\\ 5.50\\ \end{array}$	$52.88 \\ 52.94 \\ 46.38 \\ 46.36 \\ 48.67 \\ 49.15 \\ 59.98 \\ 60.90 \\ 59.92 \\ 59.88 \\ 65.91 \\ 66.31 \\ 56.45 \\ 56.42 \\ 59.94 \\ \end{cases}$	$\begin{array}{c} 7.20\\ 6.73\\ 17.95\\ 17.65\\ 12.68^a\\ 12.48\\ 5.44\\ 3.87\\ 11.96\\ 11.40\\ 8.76\\ 8.42\\ 14.78\\ 16.11\\ 10.80\\ \end{array}$	$\begin{array}{c} 0.99\\ 1.00\\ 1.49\\ 1.50\\ 1.68\\ 1.67\\ 1.01\\ 1.00\\ 0.76\\ 0.75\\ 0.50\\ 0.50\\ 1.05\\ 1.00\\ 1.01 \end{array}$	$\begin{array}{c} 1.98\\ 2.00\\ 0.99\\ 1.00\\ 0.71\\ 0.67\\ 1.00\\ 0.93\\ 1.00\\ 1.02\\ 1.00\\ 0.52\\ 0.50\\ 0.50\end{array}$	$\begin{array}{c} 1 \ .07 \\ 1 \ .00 \\ 3 \ .05 \\ 3 \ .00 \\ 2 \ .05 \\ 2 \ .00 \\ 0 \ .20 \\ 0 \ .20 \\ 0 \ .20 \\ 0 \ .00 \\ 0 \ .89 \\ 0 \ .75 \\ 0 \ .05 \\ 0 \ .05 \\ 1 \ .38 \\ 1 \ .50 \\ 0 \ .68 \end{array}$			
	CaO 20.75 20.91 27.26 27.48 32.31 32.36 23.88 24.06 17.88 17.74 13.07 13.10 23.39 22.29 23.76	$\begin{tabular}{ c c c c c } \hline C & C & O & (NH_4)_2 O \\ \hline C & C & O & (NH_4)_2 O \\ \hline 20.75 & 19.17 \\ 20.91 & 19.42 \\ 27.26 & 8.41 \\ 27.48 & 8.51 \\ 32.31 & 6.34^a \\ 32.36 & 6.01 \\ 23.88 & 10.70 \\ 24.06 & 11.17 \\ 17.88 & 10.24 \\ 17.74 & 10.98 \\ 13.07 & 12.26 \\ 13.10 & 12.17 \\ 23.39 & 5.38 \\ 22.29 & 5.18 \\ 23.76 & 5.50 \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Composition, \% \\ \hline CaO & (NH_4)_2O & P_2O_5 \\ \hline 20.75 & 19.17 & 52.88 \\ 20.91 & 19.42 & 52.94 \\ 27.26 & 8.41 & 46.38 \\ 27.48 & 8.51 & 46.36 \\ 32.31 & 6.34^a & 48.67 \\ 32.36 & 6.01 & 49.15 \\ 23.88 & 10.70 & 59.98 \\ 24.06 & 11.17 & 60.90 \\ 17.88 & 10.24 & 59.92 \\ 17.74 & 10.98 & 59.88 \\ 13.07 & 12.26 & 65.91 \\ 13.10 & 12.17 & 66.31 \\ 23.39 & 5.38 & 56.45 \\ 22.29 & 5.18 & 56.42 \\ 23.76 & 5.50 & 59.94 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Many of the pyrophosphates were either quite insoluble or very slowly soluble in water. The crystals of these materials were washed thoroughly with water, rinsed with acetone, and allowed to dry in air at room temperature. Some of the pyrophosphates, however, were readily soluble in water, and the details of the washing and drying of these materials are included in the methods of their preparation.

Calcium Pyrophosphates

Six calcium pyrophosphates, including two pairs of dimorphs of hydrated calcium pyrophosphate, were prepared. The compositions of typical preparations of these materials are shown in Table I.

Calcium Pyrophosphate Dihydrate, The triclinic dimorph of Triclinic. Ca₂P₂O₇.2H₂O was prepared by allowing a solution of 1.1 grams of CaH₂P₂O₇ in 100 ml. of water to stand at room temperature. Coarse prismatic crystals appeared in 3 days, and the crystallization was virtually complete in 7 days.

The triclinic is the more stable of the dimorphs of Ca₂P₂O₇.2H₂O, and is one of the hydrolytic degradation product of calcium polyphosphate. It dehydrate rapidly at 300° to 400° C. to oriented pseudomorphs of β -Ca₂P₂O₇.

. .

Calcium Pyrophosphate Dihydrate, Monoclinic. The monoclinic dimorph of Ca₂P₂O₇.2H₂O is prepared in nearly neutral media, rather than in the acid media in which the triclinic dimorph is formed. In the preparation of the monoclinic dimorph, a saturated CaCl₂ solution was added to a solution of 1 gram of K₄P₂O₇ and 10 grams of KCl in 60 ml. of water, with care that the pH did not fall below 6. The mixture was then diluted to 100 ml. with water, and the gelatinous precipitate of amorphous calcium pyrophosphate was allowed to stand undisturbed in its mother liquor at 45°C. for 2 weeks to form crystals of monoclinic Ca₂P₂O₇.2H₂O. This dimorph also is very insoluble in water.

The presence of a dilute electrolyte appears essential to the crystallization of monoclinic Ca₂P₂O₇. 2H₂O. In water, the monoclinic dimorph slowly alters to the triclinic dimorph. In the preparation of the monoclinic dimorph, lowering of either the pH or the temperature tends to form $Ca_2P_2O_7.4H_2O$ instead of the dihydrate.

Calcium Pyrophosphate Tetrahydrate, Orthorhombic. The orthorhombic dimorph of $Ca_2P_2O_7.4H_2O$ is formed in a very dilute solution of an electrolyte in the pH range 3 to 5. It was prepared by adding 1.1 grams of $CaH_2P_2O_7$ to 200 ml. of 0.05*M* NH₄OH and allowing the mixture to stand at room temperature. The gelatinous precipitate crystallized to orthorhombic $Ca_2P_2O_7.4H_2O$ within 24 hours. The product is very insoluble in water.

Even slight warming of the mixture tends to form monoclinic $Ca_2P_2O_7.2H_2O$ instead of the orthorhombic tetrahydrate, and in water or dilute solutions orthorhombic $Ca_2P_2O_7.4H_2O$ alters slowly to triclinic $Ca_2P_2O_7.2H_2O$. In the preparation of orthorhombic $Ca_2P_2O_7. 4H_2O$, therefore, the product should be removed from the mother liquor as soon as possible.

Calcium Pyrophosphate Tetrahydrate, Monoclinic. The monoclinic dimorph of Ca₂P₂O₇.4H₂O also is formed in the pH range 3 to 5, but in solutions of electrolytes more concentrated than those in which the orthorhombic dimorph is formed. The monoclinic dimorph was prepared by mixing 35 ml. of 2.2M Ca(C₂H₃O₂)₂ solution with a solution of 17 grams of $CaH_2P_2O_7$ in 425 ml. of water and allowing the precipitated amorphous calcium pyrophosphate to stand in the mother liquor at room temperature. Well-formed stable crystals of monoclinic Ca₂P₂-O₇.4H₂O appeared in a few hours. The product is very insoluble in water. On standing in water, however, monoclinic Ca₂P₂O₇.4H₂O is slowly replaced by its orthorhombic dimorph.

Calcium Acid Pyrophosphate. This compound, CaH₂P₂O₇, which was used in the preparation of many of the other pyrophosphates, was described by Hill and coworkers (10) and prepared in quantity by Bassett (3). In a modification of Bassett's method, 250 ml. of reagent-grade 85% H₃PO₄ in a borosilicateglass beaker was heated rapidly to 210° C. with vigorous stirring which was continued throughout the preparation to prevent supersaturation. Ca(H2- $PO_4)_2$. H₂O was then added at the rate of about 1 gram per minute until the first crystals of CaH₂P₂O₇ appeared. Seeding or scratching the walls of the beaker with a glass rod helped to prevent supersaturation. The rate of addition of $Ca(H_2PO_4)_2$. H_2O was then decreased to about 0.2 gram per minute, and the addition was continued until a reasonably thick suspension (about 20% solids) was obtained. The hot mixture was filtered immediately by suction on a fritted-glass filter. When cool, the crystals were washed liberally with acetone to remove residual acid and then allowed to air dry.

The usual crop of $CaH_2P_2O_7$ weighed about 50 grams. The salt is soluble to the extent of about 4 grams in 100 ml. of water, but the solution is not stable. On standing, a solution of $CaH_2P_2O_7$ in water deposits crystals of either $Ca_3H_2(P_2O_7)_2.4H_2O$ or triclinic Ca_2 - $P_2O_7.2H_2O$, depending upon the concentration of the solution.

Tricalcium Dihydrogen Pyrophosphate Tetrahydrate. The tetrahydrate $Ca_{3}H_{2}(P_{2}O_{7})_{2}.4H_{2}O$ was prepared by allowing mixtures of one part by weight of CaH₂P₂O₇ and no more than 19 parts of water to stand at room temperature for several hours. Higher yields and more uniform crystals were obtained with smaller proportions of water, but longer times, usually 3 or 4 days, were required. If more than 19 parts of water was used, the initially precipitated $Ca_3H_2(P_2O_7)_2$.- $4H_2O$ was metastable and rapidly altered to triclinic Ca₂P₂O₇.2H₂O. The preparation of larger crystals may be carried out at higher temperatures if the amount of water in the initial mixture is decreased to 10 parts or less. $\rm Ca_3H_2\text{-}$ (P₂O₇)₂.4H₂O dissolves very slowly in water.

Tricalcium Dihydrogen Pyrophosphate Monohydrate. The monohydrate $Ca_3H_2(P_2O_7)_2.H_2O$ was prepared by digesting mixtures of 1 part by weight of $CaH_2P_2O_7$ and no more than 10 parts of water at 65° to 75° C. for about 24 hours. The initially precipitated $Ca_3H_2(P_2O_7)_2.4H_2O$ was metastable; it slowly redissolved as the monohydrate crystallized. If more than 10 parts of water was used, or if the temperature was much above 75° C., the monohydrate was slowly replaced by triclinic $Ca_2P_2O_7.2H_2O$. $Ca_3H_2(P_2O_7)_2. H_2O$ dissolves very slowly in water.

Calcium Ammonium Pyrophosphates

Three neutral and five acid calcium ammonium pyrophosphates were prepared. The compositions of typical preparations of these materials are shown in Table II.

Calcium Diammonium Pyrophosphate Monohydrate. The salt Ca- $(NH_4)_2P_2O_7$. H_2O was prepared by treating at room temperature a solution of CaH_2P_2O_7 with NH_4OH to form a mixture with a pH of 7 or more and in which the water was no more than 95% of the total weight of the mixture. Small crystals of the product formed immediately.

When the pH was below 7 or the water content more than 95%, the initially precipitated $Ca(NH_4)_2P_2O_7$.-H₂O was replaced rapidly by $Ca_3(NH_4)_2$ -(P₂O₇)₂.6H₂O. On the other hand, large crystals of $Ca(NH_4)_2P_2O_7$.H₂O were prepared by allowing crystals of $Ca_3(NH_4)_2(P_2O_7)_2$.6H₂O to stand at room temperature in a 5 to 10*M* NH₄OH solution. $Ca(NH_4)_2P_2O_7$. H_2O dissolves slowly and incongruently in water. The crystals were washed rapidly with a minimum amount of water, rinsed with acetone, and air dried. The crystals tend to dehydrate at temperatures much above room temperature.

Tricalcium Diammonium Pyrophosphate Hexahydrate. Crystals of Ca₃- $(NH_4)_2(P_2O_7)_2.6H_2O$ were prepared by allowing a mixture of 1 gram of CaH₂- P_2O_7 and 15 ml. of 0.6M NH₄OH to stand at room temperature for 24 to 48 hours. The crystals were small, but well-formed plates, and they were washed and dried like other slowly soluble materials.

 $Ca_3(NH_4)_2(P_2O_7)_2.6H_2O$ is the stable phase in the region of the system CaH_2 - P_2O_7 -NH₄OH-H₂O in which the pH is 5 to 8 and the H₂O content is 80 to 95%. Use of less soluble sources of pyrophosphate, such as $Ca_3H_2(P_2O_7)_2.-$ 4H₂O, CaNH₄HP₂O₇, or Ca(NH₄)₂-P₂O₇.H₂O, instead of CaH₂P₂O₇ in the preparation yields larger crystals of $Ca_3(NH_4)_2(P_2O_7)_2.6H_2O$, but a longer time is required. On standing in water, $Ca_3(NH_4)_2(P_2O_7)_2.6H_2O$ is slowly replaced by orthorhombic Ca₂P₂O₇.4H₂O.

Pentacalcium Diammonium Pyrophosphate Hexahydrate. The salt $Ca_5(NH_4)_2(P_2O_7)_3.6H_2O$ was prepared by allowing 1 gram of monoclinic $Ca_2P_2O_7.4H_2O$ to stand at room temperature in 50 ml. of 5*M* NH₄Cl solution. The preparation could be accelerated by warming and stirring the mixture, but the crystals then were smaller. The product is so insoluble that it may be washed liberally with hot water.

Tricalcium Tetraammonium Acid Pyrophosphate Trihydrate. The salt $Ca_3(NH_4)_4H_6(P_2O_7)_4.3H_2O$ was prepared by allowing 1 gram of $CaH_2P_2O_7$ to stand for about 1 hour at room temperature in 50 ml. of 6.5M NH₄Cl solution. The product is quite soluble in water. The crystals were filtered from the mother liquor, washed repeatedly with ethyl alcohol to remove NH₄Cl, rinsed with acetone, and air dried.

 $Ca_3(NH_4)_4H_6(P_2O_7)_4.3H_2O$ is metastable in its mother liquor, but it persists unchanged for several hours, after which a slow alteration to $CaNH_4HP_2O_7$ begins.

Calcium Ammonium Hydrogen Pyrophosphate. The salt CaNH₄HP₂O₇ was prepared by digesting 1 gram of CaH₂P₂O₇ in 75 ml. of 0.6M NH₄Cl solution at 65° to 70° C. for about 1 hour. The preparation was accelerated by stirring the mixture, but the product then was composed of spherulites of small blade crystals. CaNH₄HP₂O₇ is very slowly soluble in water.

 $CaNH_4HP_2O_7$ is the stable phase in the region of the system $CaH_2P_2O_7$ - NH_4OH-H_2O in which the pH is 2.5 to 5 and the H₂O content is less than 95%. CaNH₄HP₂O₇ may be prepared also by prolonging the equilibration in the method of preparation of $Ca_3(NH_4)_4H_6(P_2O_7)_4.3H_2O_1$

Calcium Diammonium Tetrahydrogen Pyrophosphate. The salt Ca- $(NH_4)_2H_4(P_2O_7)_2$ is formed in concentrated salt solutions that have a pH below 2. It was prepared by allowing 5 grams of CaH₂P₂O₇ to stand at room temperature in 20 ml. of a saturated solution of NH₄Cl for about 24 hours, but the time could be shortened by seeding the mixture. $Ca(NH_4)_2H_4(P_2O_7)_2$ is very soluble in water in which it rapidly alters to $Ca_2NH_4H_3(P_2O_7)_2.3H_2O$. The $crystals \quad of \quad Ca(NH_4)_2H_4(P_2O_7)_2 \quad were$ filtered rapidly by suction, suspended in ethyl alcohol to remove NH4Cl, filtered, rinsed with acetone, and air dried. The dry crystals were stable in the usual laboratory atmosphere.

Dicalcium Ammonium Trihydrogen Pyrophosphate Trihydrate. The salt Ca₂NH₄H₃(P₂O₇)₂.3H₂O was prepared by allowing 2 grams of CaH₂P₂O₇ to stand in 25 ml. of 1.5M NH₄Cl solution at room temperature for about 1 hour. The preparation could be accelerated by stirring and warming the mixture to 40° or 45° C. The product is insoluble in water.

Dicalcium Ammonium Trihydrogen Pyrophosphate Monohydrate. The salt $Ca_2NH_4H_3(P_2O_7)_2$ H_2O was prepared by allowing 10 grams of $CaH_2P_2O_7$ to stand in 20 ml. of 4.7M NH₄Cl solution in a stoppered container at room temperature for 6 months. The crystals are quite insoluble in water.

 $Ca_2NH_4H_3(P_2O_7)_2$, H_2O is formed in salt solutions more concentrated than those used in the preparation of the trihydrate, but both hydrates are formed in the pH range 2.0 to 2.5. In the preparation of the monohydrate, there is first formed a mixture of Ca2NH4H3- $(P_2O_7)_2$. $3H_2O$ and $Ca_3(NH_4)_2(P_2O_7)_2$. 6H₂O, and these phases slowly dissolve, and crystals of $Ca_2NH_4H_3(P_2O_7)_2$. H_2O appear after several weeks.

Calcium Potassium Pyrophosphates

Four neutral and six acid calcium potassium pyrophosphates were prepared. The compositions of typical preparations of these materials are shown in Table III.

Calcium Dipotassium Pyrophosphate. Crystals of $CaK_2P_2O_7$ were prepared by placing 1 gram of CaH₂P₂O₇ in 20 ml. of 0.5M K₄P₂O₇ solution and allowing the mixture to stand at room temperature. Hexagonal plates of CaK2-P2O7.4H2O were formed immediately, but these were unstable and were replaced by small sixling twin crystals of the desired anhydrous salt. The replacement was complete within an hour at room temperature; warming

Table III. Calcium Potassium Pyrophosphates

		Compos	Moles/Mole P_2O_5				
Compound	Compound CaO $_{2}P_{2}O_{7}$ 19.60 pichiometric 19.19 $_{2}P_{2}O_{7}$.4H ₂ O 15.34 pichiometric 15.39 $\Sigma_{4}(P_{2}O_{7})_{2}.2H_{2}O$ 28.77 pichiometric 28.89 $\Sigma_{4}(P_{2}O_{7})_{3}.6H_{2}O$ 30.48 pichiometric 30.86 $_{4}H_{2}(P_{2}O_{7})_{2}$ 10.32 pichiometric 10.26 $_{2}H_{4}(P_{2}O_{7})_{2}$ 11.85 pichiometric 22.30 pichiometric 22.07 HP_{2}O_{7}.2H_{2}O 19.11 pichiometric 19.33 VL (P_{0}) 2U_{0}O 21.47	K ₂ O	P ₂ O ₅	H ₂ O (diff.)	CaO	к	Hydrate H ₂ O
$CaK_2P_2O_7$	19.60	30.79	49,49	0.12	1.00	1.88	0.02
$CaK_{9}P_{9}O_{7}$, $4H_{9}O$	15.34	32.23 25.20	48.58 38.72	20.74	1.00	2.00	4.22
Stoichiometric	15.39	25.86	38.97	19.78	1.00	2.00	4.00
$Ca_3K_2(P_2O_7)_2$, $2H_2O$ Stoichiometric	28.77	$15.00 \\ 16.17$	48,96 48,75	6.19	$1.48 \\ 1.50$	0.93	$1.17 \\ 1.00$
$Ca_{3}K_{2}(P_{2}O_{7})_{3}, 6H_{2}O_{7}$	30.48	11.30	46.42	11.80	1.66	0.73	1.88
$CaK_4H_9(P_9O_7)_9$	30.86 10.32	10.37 32.90	46,87	11.90	1.67	0.67	2,00
Stoichiometric	10.26	34.48	51.97	3.29	0.50	2.00	0.00
$CaK_2H_4(P_2O_7)_2$ Stoichiometric	$11.85 \\ 11.93$	$19.81 \\ 20.03$	59.15 60.38	9.19 7.66	$0.51 \\ 0.50$	$1.01 \\ 1.00$	$0.24 \\ 0.00$
$CaKHP_2O_7$	22.30	17.77	55.86	4.07	1.01	0.96	0.06
Stoichiometric $CaKHP_{9}O_{7}, 2H_{9}O$	22.07	$18.53 \\ 15.99$	55.86 48.63	3.54 16.27	$1.00 \\ 0.99$	1.00 0.99	$0.00 \\ 2.12$
Stoichiometric	19.33	16.23	48.92	15.52	1.00	1.00	2.00
$Ca_2 KH_3 (P_2 O_7)_2 , 3H_2 O_7$ Stoichiometric	21.47 21.39	9.50 8.98	54.21 54.17	14.82 15.46	$1.00 \\ 1.00$	0.53	$1.42 \\ 1.50$
$Ca_3KH(P_2O_7)_2.4H_2O$ Stoichiometric	28.70 28.99	8.30	49.36	13.64	1.47	0.51	1.90
	,//	0.12	.0.74		2.00	0.00	00

hastened the replacement and also produced larger crystals. CaK₂P₂O₇ is very insoluble in water and is stable over a wide range of temperature.

In the preparation of $CaK_2P_2O_7$, the ratio of the reagents may be varied considerably if the pH is kept between 6 and 8 and the water content of the mixture is kept below 95%. At pH's above 8, the stable phase is CaK₂P₂O₇.-4H₂O.

Calcium Dipotassium Pyrophosphate Tetrahydrate. The tetrahydrate CaK₂P₂O₇.4H₂O was prepared by adding, slowly and with stirring, 15 ml. of 0.5M Ca(C₂H₃O₂)₂ solution to a solution of 5 grams of $K_4P_2O_7$ in 50 ml. of water at room temperature. The product crystallized rapidly, and the crystals are quite insoluble in water. The crystals dehydrate at temperatures above 100° C. to pseudomorphs of $CaK_2P_2O_7$.

CaK₂P₂O₇.4H₂O forms in solutions with pH's in the range 6 to 10.5, but it is stable only at pH's above 8. At lower pH, it is replaced by the anhydrous salt.

Tricalcium Dipotassium Pyrophosphate Dihydrate. The salt Ca₃K₂- $(P_2O_7)_2.2H_2O$ was prepared by allowing a mixture of 6.80 grams of $K_4P_2O_7$, 4.27 grams of CaH₂P₂O₇, and 100 ml. of water to stand at room temperature for 4 to 7 days. The finely divided crystalline product is very slowly soluble in water.

The proportions given for the preparation of $Ca_3K_2(P_2O_7)_2.2H_2O$ place the mixture in the center of its field of stability. The salt is formed in any mixture of 10 grams of $K_4P_2O_7$, 6.8 grams of CaH₂P₂O₇, and 70 to 320 ml. of water that is allowed to stand at room temperature for about a week. Increasing the amount of water in the mixture increases both the time required and the size of the crystals produced. CaKHP₂O₇ and $Ca_5K_2(P_2O_7)_{3.6}H_2O$ are first formed, but these metastable intermediates are slowly replaced by $Ca_{3}K_{2}(P_{2}O_{7})_{2}.2H_{2}O.$

Pentacalcium Dipotassium Pyrophosphate Hexahydrate. The salt $Ca_5K_2(P_2O_7)_{3.6}H_2O$ was prepared by adding monoclinic Ca2P2O7.4H2O or amorphous calcium pyrophosphate (prepared from $Na_4P_2O_7$ and $CaCl_2$) to a stirred 5M KCl solution at 70° to 75° C. The product precipitated rapidly. Larger crystals were prepared by allowing a diluted mixture of the reagents to stand at room temperature for about a week. $Ca_5K_2(P_2O_7)_{3.6}H_2O$ is very insoluble; it was washed liberally with warm water to remove KCl.

Calcium Tetrapotassium Dihydrogen **Pyrophosphate.** The salt CaK₄H₂- $(P_2O_7)_2$ was prepared by adding a mixture of 6 grams of $K_4P_2O_7$ and 4 grams of $CaH_2P_2O_7$ to 100 ml. of a saturated (4.5M) KCl solution at room tempera-A gelatinous precipitate was ture. formed initially, but this precipitate crystallized within 24 hours. Stirring hastened the crystallization but produced smaller crystals. The product is moderately soluble, but it can be washed sparingly with water.

Calcium Dipotassium Tetrahydrogen Pyrophosphate. The salt CaK₂H₄- $(P_2O_7)_2$ was prepared by adding 5 grams of CaH₂P₂O₇ to a mixture of 20 ml. of saturated KCl solution and 10 grams of solid KCl and allowing the mixture to stand at room temperature for 12 to 24 hours. Stirring or seeding accelerated the crystallization but produced smaller crystals.

 $CaK_2H_4(P_2O_7)_2$, like its ammonium isomorph, is soluble in water. The product was filtered rapidly by suction, suspended in ethyl alcohol to remove KCl. filtered, rinsed with acetone, and air dried.

Calcium Potassium Hydrogen Pyrophosphate. The salt CaKHP₂O₇ was

Table IV. Morphological and Optical Properties of Crystalline Pyrophosphates

Compound	Crystal System, Class, and Habit	Refractive Indices
C. B.O. 2H.O.	Trielinie 1 Beneileleningden der	- 1 - 10
$\operatorname{Ca}_2\operatorname{F}_2\operatorname{O}_7\cdot\operatorname{ZH}_2\operatorname{O}$	gated along a	$\alpha = 1.540$ $\beta = 1.549$ $\gamma = 1.568$
$Ca_2P_2O_1.2H_2O$	Monoclinic, $2/m$. Rods and tablets contg. b, elongated along a or c	$\alpha = 1.541$ $\beta = 1.554$ $\alpha = 1.554$
$Ca_2P_2O_7$. $4H_2O$	Orthorhombic, mmm. Thin plates and blades contg. N_{β} and N_{γ} ,	$\alpha = 1.533$ $\beta = 1.548$ $\alpha = 1.548$
$Ca_2P_2O_7.4H_2O$	Monoclinic, $2/m$. (010) Tablets ter- minated by the set {011}; tends	$\alpha = 1.549$ $\alpha = 1.509$ $\beta = 1.518$
$CaH_2P_2O_7^c$	Orthorhombic, mmm. Barite-type plates and tablets contg. N_{α}	$\begin{array}{l} \gamma = 1.529\\ \alpha = 1.510\\ \beta = 1.535 \end{array}$
$Ca_{3}H_{2}(P_{2}O_{7})_{2}.4H_{2}O$	and N_{γ} Triclinic, 1. Long blades contg. N_{α} and $N_{\gamma}' \cong N_{\gamma}$, elongated along $N_{\gamma}'^{d}$	$\gamma = 1.588$ $\alpha = 1.533$ $\beta = 1.540$ $\gamma = 1.560$
$Ca_3H_2(P_2O_7)_2$, H_2O	Orthorhombic, mmm. Highly beveled rectangular plates contg. N_{α}	$\alpha = 1.539$ $\beta = 1.543$
$Ca(\mathbf{N}\mathbf{H_4})_2P_2O_7.\mathbf{H}_2O$	and N_{γ} , elongated along N_{α} Monoclinic, 2. Hemimorphic plates contg. N_{γ} (= b) and N_{β}'	$\gamma = 1.565$ $\alpha = 1.520$ $\beta = 1.537$ $\gamma = 1.540$
$Ca_{3}(NH_{4})_{2}(P_{2}O_{7})_{2}.6H_{2}O$	Monoclinic, ^e 2/m., (100) Tablets elongated along c	$\alpha = 1.520$ $\beta = 1.528$ $\alpha = 1.531$
$Ca_5(NH_4)_2(P_2O_7)_3. 6H_2O^{f}$	Hexagonal, 6/mmm. Hexagonal rods and needles terminated by 1st- and 2nd-order pyramids	$\epsilon = 1.588^{\circ}$ $\omega = 1.565$
$Ca_{3}(NH_{4})_{4}H_{6}(P_{2}O_{7})_{4}, 3H_{2}O$	Orthorhombic, mmm. Simple plates contg. N_{β} and N_{γ} , elongated along N_{γ} .	$\alpha = 1.509$ $\beta = 1.510$ $\gamma = 1.522$
$CaNH_4HP_2O_7$	Monoclinic, 2/m. (010) Plates modified by {101} and {100} sets	$\alpha = 1.534$ $\beta = 1.537$ $\gamma = 1.553$
$Ca(NH_4)_2H_4(P_2O_7)_2{}^{j}$	Monoclinic, 2/m. (010) Tablets modified by {021}, {110}, and sometimes {103}	$\alpha = 1.520$ $\beta = 1.545$ $\gamma = 1.549$
$Ca_2NH_4H_3(P_2O_7)_2.3H_2O^{\it f}$	Monoclinic, $2/m$. (010) Plates and blades elongated along $N_{\gamma}{}^{b}$	$\alpha = 1.512$ $\beta = 1.523$ $\gamma = 1.530$
$Ca_2NH_4H_8(P_2O_7)_2.H_2O$	$\begin{array}{ll} \mbox{Triclinic, 1.} & \mbox{Thin plates contg. } N_{\alpha} \\ & \mbox{and } N_{\gamma}{}' \cong N_{\gamma}; \ \mbox{elongated along} \\ & N_{\gamma}{}'^{h} \end{array}$	$\alpha = 1.536$ $\beta = 1.536$ $\beta = 1.545$ $\gamma = 1.570$
$CaK_2P_2O_7$	Monoclinic, 2/m. Tabular on (001), twinning common. Crystals dis- play pronounced pseudohexagonal	$\alpha = 1.542$ $\beta = 1.547$ $\gamma = 1.549$
$CaK_2P_2O_7.4H_2O$	Hexagonal, 6/mmm. Tabular to platy on (0001), frequently lamel-	$\begin{array}{l} \epsilon &= 1.495\\ \omega &= 1.489 \end{array}$
$Ca_{3}K_{2}(P_{2}O_{7})_{2}.2H_{2}O^{i}$	Symmetry not determined. Minute rhombic scalar crystals, frequently in complex aggregates	N = 1.563 (mean)
$Ca_{5}K_{2}(P_{2}O_{7})_{3}.6H_{2}O^{f}$	Hexagonal, 6/mmm. Hexagonal rods and needles terminated by 1st- and 2nd-order pyramids	$\begin{aligned} \epsilon &= 1.559^{g} \\ \omega &= 1.545 \end{aligned}$
$CaK_4H_2(P_2O_7)_2$	Monoclinic, $2/m$. Tablets flattened on <i>a</i> or <i>c</i> (not detd. which), elon-	$\alpha = 1.510$ $\beta = 1.537$ $\alpha = 1.552$
$CaK_2H_4(P_2O_7)_2$	Monoclinic, 2/m. (010) Tablets elongated along <i>c</i> , modified by sets	$\alpha = 1.499$ $\beta = 1.529$ $\alpha = 1.533$
$CaKHP_2O_7$	Monoclinic, 2/m. (010) Tablets elongated along c, modified by	$\alpha = 1.535$ $\alpha = 1.514$ $\beta = 1.527$ $\alpha = 1.537$
$CaKHP_2O_7.2H_2O$	Orthorhombic, mmm. Tabular, elongated prisms terminated by a prominent (hkl) set, probably	$\alpha = 1.357$ $\alpha = 1.475$ $\beta = 1.504$ $\gamma = 1.515$
$Ca_2KH_{\delta}(P_2O_7)_2$. $3H_2O'$	Monoclinic, 2/m. (010) Plates elongated along N_{β}'	$\alpha = 1.508$ $\beta = 1.520$
$Ca_3KH(P_2O_7)_2$. $4H_2O$	Monoclinic, 2/m. Thin (010) rhombic blades	$\gamma = 1.524$ $\alpha = 1.539$ $\beta = 1.541$ $\gamma = 1.551$

	Optical Properties ^a
	Biaxial (+), $2V = (68.5^{\circ})$. OAP inclined to a with Bxa $\sim \perp$ to (001). $\beta = 103^{\circ}$, d. = 2.46
	Biaxial (-), 2V = 30-40° (42°). OAP = (010), $b = N_{\beta}, N_{\gamma} \text{ on } (010) = 35^{\circ}. \beta = \sim 90^{\circ}, d. = 2.47$
, +	Biaxial (-), 2V = 15–20° (28°). OAP and N $_{\alpha} \perp$ to tabular plane. d. = 2.31
;	Biaxial (+), $2V = (83^{\circ})$. OAP \perp to (010), $N_{\gamma} = b$, N _{β} \wedge c = 41° in acute β . $\beta = 109^{\circ}$, d. = 2.20
	Biaxial (+), $2V > 60^{\circ} (71^{\circ})$. OAP in plane of tabularity. d. = 2.57
) }	Biaxial (+), 2V ~ 60° (62°). OAP nearly coin- cides with tabular plane, N _β tilted ~5° with \perp , N _γ inclined 8° to elongation axis. $\beta = 103.5^{\circ}$, d. = 2.41 Biaxial (+), 2V = 45° (46.7°). OAP in plane o
	tabularity. d. = 2.58 Biaxial ($-$) 2V at 40° (46.5°). OAP + to (010)
	N _{γ} = b, N _{β} inclined 23° on (010) in obtuse β . $\beta = \sim 110^\circ$, d. = 1.99
	Biaxial (-), $2V = 60^{\circ}$ (61°). OAP = (010), N _{\beta} = b, N _{\alpha} inclined 27° to c in acute \beta. \beta = 110.5°, d = 2.08
7	Uniaxial (+), d. = 2.40
	Biaxial (+), $2V = 10^{\circ} (31^{\circ} \text{ when } N_{\beta} \text{ taken as } 1.510)$. OAP and $N_{\alpha} \perp$ to plane of tabularity, d. = 2.08
	Biaxial (+), 2V = 42° (46°). OAP \perp to (010) N _{\alpha} = b, N _Y \wedge c on (010) inclined 32° in obtuse β . β = 92°, d. = 2.26 Biaxial (-), 2V = 38-40° (42.3°). OAP \perp to (010), N _Y = b, N _B \wedge c on (010) = 11° in acute β . β = 103°, d. = 2.19 Biaxial (-), 2V > 60° (76.7°). OAP \perp to (010) N _{\alpha} = b, N _Y \wedge elongation axis on (010) = 3° in acute β . β = 96.5°, d. = 2.19 Biaxial (+), 2V \sim 60° (63°). OAP nearly coin- cides with tabular plane, N _B tilted 7° with \perp to tabular plane, N _Y on tabular plane inclined 6° to elongation axis, d. = 2.39 Biaxial (-), 2V = 60-65° (64°). OAP = (010), N _{\beta} = b, N _{\alpha} inclined 4° to c on (010) in obtuse β . β = 104°, d. = 2.77 Uniaxial (+), d. = 2.18
)	u. – 2.09
7	Uniaxial $(+)$, d. = 2.51
	Biaxial (-), $2V > 60^{\circ}$ (73°). OAP \perp to (010), N _Y = b, N _a inclined 42° on (010). $\beta = 135^{\circ}$,
	d. = 2.00 Biaxial (-), 2V = 37° (39°). OAP = (010), N _β = b, N _γ \wedge c on (010) = 11° in acute β . β = 102°, d. = 2.51
	Biaxial $(-)$, $2V = (81^\circ)$. OAP \perp to (010) , $N_{\alpha} = b$, $N_{\beta} \wedge c \text{ on } (010) = 42^\circ \text{ in acute } \beta$. $\beta = 92^\circ$,
	d. = 2.59 Biaxial (-), 2V = 62.5° (62.2°). OAP = plane of tabularity, N_{γ} = elongation axis. d. = 2.25
	Biaxial (-), 2V ~ 60° (61.5°). OAP \perp to (010), N _{\alpha} = b, N _{\beta} \wedge elongation axis = 35° in acute β on (010). β = 96°, d. = 2.34 Biaxial (+), 2V = (48.5°). OAP \perp to (010), N _{\alpha} = b, N _{\beta} inclined to elongation axis by 37° in

obtuse β . $\beta = 124^\circ$, d. = 2.45

Footnotes for Table IV at top of page 219

^a Calculated values for 2V are in parentheses. All values for densities are calculated.
^b Carlsbad twinning common.
^c Supplements data of Hill *et al.* (10).

^c Supplements data of fill *et al.* (10).
^d Crystals almost always show polysynthetic twinning.
^e Orientation based on x-ray, b-centered, unit cell.
^f NH₄ and K salts are isostructural.
^g Zonal variations in composition frequently reflected in variations in refractive index (hopper effect) without changes in position or in-¹ Zohai variations in composition in compositin composition in composition in com

			Tal	ble V.	Pow	/der X-Ray	, Diffra	ction	Patter	ns of C	Calcium	Pyropho	sphate	\mathbf{s}^{a}			
d, A.	1	d, A.	1	d, A.	1	d, A.	1	d, A.	1	d, A.	1	d, A.	1	d, A.	1	d, A.	I.
	Ca_2P_2C	D7.2H	O, tricl	linic			Ca_3	$\mathbf{H}_2(\mathbf{P}_2\mathbf{C})$	$(0_7)_2.4H$	$_{2}O$			$Ca_3(NH)$	$H_{4})_{4}H_{6}(P)$	${}_{2}O_{7})_{4}$	$3H_2O$	
8.01 6.95 5.48 5.20 4.47	(1)vs (2)s vw vw vw	2.95 2.76 2.65 2.50 2.32	wm wm m w vw	1.54 1.48 1.44 1.40 1.38	w w w w	3.58 3.43 6.37	m w Ca 0,49	2.03 2.01 $_{3}H_{2}(P_{2})$ 2.87	(3)ms wm O ₇) ₂ .H 0.02	1.39 1.34 2O 2.05	vw vw	4.97 4.78 4.45 4.19 3.99	w w vw vw (3)m	3.13 3.06 2.98 2.89 2.51	vw vw vw w vw	1.71 1.64 1.55 1.52	w vw vw vw
3.98	W VW	2.23	wm wm	1.36	w w	4.93	0.11	2.84	0.06	2.03	0.01	-					
3.42	m	$\frac{2}{2}.00$	w	1.17	w	4.64 4.32	0.17	2.78	0.02	2.00	0.02	C	aNH₄H	P_2O_7 and	id Cak	CHP ₂ O	7
3.21 3.10 3.04	(3)ms ms m	1.89 1.73 1.56	w wm wm	1.14	w	4.21 4.04	0.06	2.70 2.63	0.13	1.94	0.07 0.03	8.80 5.59 5.10	(1)s wm wm	3.08 2.95 2.81	vw w w	1.95 1.89 1.84	vw w w
	$Ca_2P_2O_2$. 2 H₂ €), mono	clinic		3.85 3.70	0.07	2.58	0.08	1.80	0.09 0.06	4.91 4.17	vw (2)ms	2.70 2.56	vw vw	1.77 1.74	vw w
7.37	(1)s	2.77	w	1.83	W	3.56	0.04	2.37	0.28	1.74	0.03	3.82	vw vw	2.44	w vw	1.65	vw vw
5,27	vw	2.56	m	1.73	w	3.34	0.05	2.29	0.04	1,67	0.03	3.62	vw	2.27	wm	1.58	vw
4.62	(3)s w	2.41	w m	1.69	w vw	3.20	1.00 0.18	2.26	0.05	1.65	0.02	3.41	vw (3)ms	2.15	vw vw	1,56	vw w
3.43	vw	2.20	vw	1.55	vw	3.05	0.15	2.18	0.05	1.58	0.05	3.23	m	2.07	vw	1.42	vw
3.22	s (2)s	$2.10 \\ 2.00$	w vw	1.53	vw vw	3.01 2.98	$0.14 \\ 0.09$	2.16	$ \begin{array}{c} 0.01 \\ 0.02 \end{array} $	1.54	0.02	5.10	vw	2.02	wm	1.40	vw
2.86	vw	1.89	m	1.45	vw		Ca($NH_{4})_{2}$	P ₂ O ₇ . H	$_{2}O$		Ca(NI	\mathbf{H}_4) ₂ \mathbf{H}_4 ($P_2O_7)_2$ a	nd Ca	K₂H₄(F	$P_2O_7\rangle_2$
	$a_2 P_2 O_7$.	$4H_2O$,	orthorn	lombic		7.23	(1)vs	2.90	m	2.11	w	6.54 5.92	ms vw	3.30 (3)s m	$1.81 \\ 1.78$	vw w
5.95	(T)vs wm	2.94	(2)s	1.93	w w	5.51 4.86	(2)s	2.85	vw w	2.06	vw w	4.99	m	2.99	m	1.76	vw
5.37	vw	2.83	Ŵ	1.84	W	4.23	wm	2.68	vw	1.88	wm	4.82	(1)s	2.87	m m	1.74 1.70	vw vw
4.99	VW VW	2.65	w w	1.78	w	3.86	W	2.52	m	1.72	VW	4.37	vw	2.29	vw	1.67	vw
4.37	wm	2.41	w	1.61	vw	3.39	(3)ms	2.39	vw	1.47	wm	4,16	vw	2.23	W	1.61	vw
3.75	wm ^t	2.35	VW	1.57	W	2.98	m	2.32	vw	1.45	wm	3.43	(2)s	2.18	w	1.49	vw
3.37	(3)m	2.16	wm	1.39	vw vw		$Ca_3(N$	$H_{4})_{2}(P$	${}_{2}O_{7})_{2}.6$	H_2O			` '				
3.18	w	2.12	wm			7.27	vw	2.84	w	1.85	w	C	$a_2 NH_4 I$	$H_3(P_2O_7)$	$)_2$, 3H	O and I O	
	Ca_2P_2O	$9_7.4 { m H}_2{ m (}$	O, mono	oclinic		6.39 5.73	$(1)_{n}$	2.74	VW	1.80	w	0.7	(1)	3 1 2		1 90	147
6.21	(2)s	2.75	w	1.80	w	5.56	m	2.59	vw	1.64	vw	5.82	(3)m	3.07	wm	1.93	vw
5.13	wm	2.55	m	1.70	w wm	4.95	(3)ms	2.39	w	1.56	vw	5.10	vw (2)	3.02	w	1.780	vw
3.95	vw	2.49	vw	1.68	wm	4.20	wm m	2.18	w vw	1.42	vw vw	4,40	(Z)s VW	2.94	m	1.62	vw
3.62	(3)ms	2.45	vw	1.61	m	3.19	m	2.13	vw	1 41	vw	3.78	w	2.57	vw	1.58	w
3.20	ms	2.21	vw	1,49	w	3.11	$(2)_{e}$	2.09	W			3.61	W	2.36	w	1,43	W
3.11	ms	2.13	vw	1.42	vw	5.07	(2)3	1.00				3.26	wm	2.20	wm	1.35	vw
2.95	vw vw ms	2.08 2.02 1.98	m w	1.31	vw	(Ca₅(NH Ca₅K	$_{4})_{2}(P_{2}O_{7})_{2}(P_$	$(7)_3.6H_3.6H_2C_3$	2O and)		3.18	wm	2.03	vw		
		CaH ₂ F	$P_2O_7^c$			10.23	(2)vs	2.70	s vw	1.79	m m	_	Ca ₂ N	$H_4H_3(P$	$_{2}O_{7})_{2}$	H_2O	
5,40	vvw	3.18	(3)ms	1.92	w	5.03	m	2.32	vw	1.64	vw	9.7	(1)vs	2.89	VW	2.01	VW
5.03	vw	2.68	wm	1.86	vw	3.84	vw	2.25	vw	1.59	W	4.86	(3)m	2.66	vw	1.94	vw
4.78	vw m	2.50	w	1.83	w	3.58	m	1.92	vw	1.49	vw	3.91	vw	2.52	VW	1.91	vw
4.05	vw	2.29	w	1.63	w	3.37	w	1.88	m	1.45	w	3.26	^b m	2.39 2.34	vw vw	1.75	vw
3.87	$\frac{vw}{2}$	2.18	w	1.58	w	2.82	(1)vs (3)s	1.84	vw vw	1.39	w	3.13	(2)s	2.10	vw	1.57	vw
3.33	(1)s	2.05	w	1.48	w		Ca.(NE	..	$\mathbf{P}_{\mathbf{O}}$	3H.O		3.09 3.00	vw vw	2.04	vw	1.50	vw
	Ca ₃ H	$_{2}(P_{2}O)$	$(1)_{2}, 4H_{2}$	0		13 62	(1)ve	3 82	x 207/4.	2 30	VW						
10.7	(1)vs	3.14	(2) vs	1.83	vw	6.74	m	3.60	(2)m	2.32	vw			CaK_2	P_2O_7		
6.74	VW VW	2.78 2.69	VW W	1.74 1.57	VW W	6.36 5.82	W VW	3.46	VW wm	2.23	w w	4.74	0.18	2.75	0.05	1.91	0.02
4.66	w	2.30	w	1.53	wm	5.65	vw	3.23	m	2.02	w			(Cor	itinued	on pag	je 220)

				1	laple '	V continue	d				
d, A.	1	d, A.	1	d, A.	I	d, A.	. 1	d, A.	I	d, A.	I
		CaK_2	P_2O_7				($CaK_{3}H_{2}$	$(P_2O_7)_2$	2	
$\begin{array}{r} 4.35 \\ 4.21 \\ 3.64 \\ 3.40 \\ 3.27 \\ 3.14 \\ 3.00 \\ 2.83 \end{array}$	$\begin{array}{c} 0.28 \\ 0.03 \\ 0.02 \\ 0.18 \\ 0.03 \\ 0.25 \\ 0.85 \\ 1.00 \end{array}$	$\begin{array}{c} 2.64\\ 2.50\\ 2.37\\ 2.26\\ 2.18\\ 2.10\\ 2.06\\ 1.99 \end{array}$	$\begin{array}{c} 0.02 \\ 0.02 \\ 0.12 \\ 0.09 \\ 0.35 \\ 0.05 \\ 0.14 \\ 0.02 \end{array}$	$\begin{array}{c} 1.88\\ 1.84\\ 1.82\\ 1.77\\ 1.73\\ 1.69\\ 1.67\\ 1.64 \end{array}$	$\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.05 \\ 0.10 \\ 0.12 \\ 0.10 \end{array}$	4.54 4.11 3.79 3.59 3.46 3.31 3.23 3.10	m m vvw vw (2)s (1)s	$\begin{array}{c} 2.56 \\ 2.46 \\ 2.35 \\ 2.30 \\ 2.25 \\ 2.07 \\ 1.99 \end{array}$	m m w vw m vw	$ \begin{array}{r} 1.69\\ 1.66\\ 1.63\\ 1.54\\ 1.44\\ 1.37\\ 1.26 \end{array} $	VW VW VW VW W VW
	Ca	aK_2P_2C	$0_7.4H_2$	С			Ca	KHP ₂	$D_7.2H_2$	0	
10.16 6.55 5.03 4.82 4.69 4.17 4.06 3.80 3.52 3.18 3.09 7.31	0.80 0.10 0.15 0.17 0.26 0.17 0.09 0.17 0.03 0.08 0.06 Ca ₃ 0.14	$\begin{array}{c} 2.95\\ 2.89\\ 2.76\\ 2.70\\ 2.66\\ 2.62\\ 2.54\\ 2.50\\ 2.45\\ 2.34\\ 2.30\\ \mathbf{K}_2(\mathbf{P}_2\mathbf{C}$	0.33 1.00 0.23 0.12 0.07 0.20 0.08 0.18 0.08 0.05 0.08 0.08 0.05 0.08 0.49 0	2.23 2.17 2.12 2.08 2.03 2.00 1.92 1.84 1.77 1.70 1.65 20 2.15	0.11 0.08 0.03 0.02 0.07 0.05 0.04 0.04 0.08 0.08 0.08 0.08	$\begin{array}{c} 6.06\\ 5.69\\ 5.09\\ 4.83\\ 4.06\\ 3.70\\ 3.63\\ 3.46\\ 3.34\\ 3.22\\ 3.16\\ 3.05\\ 2.99\\ 2.91\end{array}$	$\begin{array}{c} 0.05\\ 0.39\\ 0.52\\ 1.00\\ 0.20\\ 0.05\\ 0.34\\ 0.16\\ 1.00\\ 0.14\\ 0.81\\ 0.07\\ 0.43\\ 0.10\\ \end{array}$	$\begin{array}{c} 2.89\\ 2.86\\ 2.74\\ 2.71\\ 2.65\\ 2.55\\ 2.54\\ 2.51\\ 2.45\\ 2.45\\ 2.42\\ 2.35\\ 2.30\\ \end{array}$	$\begin{array}{c} 0.19\\ 0.28\\ 0.17\\ 0.17\\ 0.09\\ 0.03\\ 0.13\\ 0.29\\ 0.11\\ 0.11\\ 0.11\\ 0.09\\ 0.25\\ 0.21\\ \end{array}$	$\begin{array}{c} 2.25\\ 2.23\\ 2.11\\ 2.00\\ 1.97\\ 1.93\\ 1.90\\ 1.89\\ 1.85\\ 1.81\\ 1.75\\ 1.73\\ 1.69\\ \end{array}$	$\begin{array}{c} 0.25\\ 0.18\\ 0.19\\ 0.42\\ 0.08\\ 0.15\\ 0.03\\ 0.05\\ 0.04\\ 0.05\\ 0.11\\ 0.14\\ 0.13\\ \end{array}$
6.65	0.06	2.70	0.25	2.11	0.06		~ `			10	
5.60 5.45 4.47 3.33 3.28 3.22 3.12 3.09 3.06 2.94	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.16 \\ 0.08 \\ 0.11 \\ 0.34 \\ 0.17 \\ 0.23 \\ 0.17 \\ 1.00 \end{array}$	2.63 2.60 2.57 2.50 2.45 2.42 2.32 2.28 2.21	0.04 0.04 0.11 0.07 0.05 0.07 0.04 0.15	1.98 1.96 1.94 1.89 1.85 1.76 1.71 1.66	$\begin{array}{c} 0.03 \\ 0.10 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.12 \\ 0.10 \end{array}$	9.82 5.94 5.82 5.12 4.87 4.39 4.07 3.90 3.80	Ca ₃ 1.00 0.12 0.18 0.24 0.06 0.27 0.16 0.15 0.08	3.12 3.05 2.97 2.91 2.87 2.85 2.82 2.74 2.71	0.41 0.06 0.46 0.13 0.15 0.26 0.16 0.13 0.13	2.27 2.20 2.13 2.10 2.05 2.02 1.94 1.89 1.87	0.04 0.05 0.07 0.10 0.12 0.13 0.23 0.12 0.06
	C	CaK ₄ H ₂	$P_2(P_2O_7)$	2		3.67	0.72	2.61	0.25	1.84	0.05
9.77 8.56 5.48	w (3)m vw	2.98 2.85 2.72	m m m	1.89 1.86 1.73	w vw vw	3.32 3.26 3.16	0.35 0.55 0.56	2.46 2.40 2.34	$0.19 \\ 0.10 \\ 0.23$	1.77 1.73	0.10 0.06

^a Intensities estimated visually: vs = very strong, s = strong, ms = medium strong, m = medium, wm = weak medium, w = weak, vw = very weak; numbers 1, 2, and 3 denote 1st, 2nd, and 3rd strongest lines, respectively. Intensities reported numerically were read from x-ray goniometer tracings. ^b Double line. ^c This pattern contains more lines, but otherwise agrees with those reported by Bale *et al.* (1) and by Hill *et al.* (9).

prepared by adding 1 gram of $CaH_2P_2O_7$ to 100 ml. of a saturated KCl solution and allowing the mixture to stand at room temperature for 24 hours. Crystals of $Ca_2KH_3(P_2O_7)_2.3H_2O$ were formed initially, but this metastable intermediate slowly dissolved and was replaced by $CaKHP_2O_7$. Stirring and warming hastened the transformation but produced smaller crystals. The product is relatively insoluble in water.

Calcium Potassium Hydrogen Pyrophosphate Dihydrate. The dihydrate CaKHP₂O₇.2H₂O was prepared by adding 1 gram of CaH₂P₂O₇ to 50 ml. of 2*M* KCl solution and adding K₄P₂O₇ or KOH to raise the pH to 4. The amorphous precipitate that was formed was transformed within an hour to wellformed rod crystals of CaKHP₂O₇.-2H₂O. The product is moderately soluble and was washed sparingly with water. The crystals lose their water of hydration slowly at room temperature, even when stored in a closed container. Dicalcium Potassium Trihydrogen Pyrophosphate Trihydrate. The salt $Ca_2KH_3(P_2O_7)_2.3H_2O$ was prepared by adding 1 gram of $CaH_2P_2O_7$ to 10 ml. of 2.35M KCl solution and allowing the mixture to stand at room temperature. Well-formed crystals of $Ca_2KH_3(P_2O_7)_2. 3H_2O$ were deposited within 1 hour. The crystals are slowly soluble in water, but they can be washed with water in the usual manner.

The composition of the mixture can be varied considerably as long as the mixture contains no more than 95% water and the pH is between 2 and 3. At pH's above 3, CaKHP₂O₇ is formed; at pH's below 2, Ca₃H₂(P₂O₇)₂.4H₂O is formed.

Tricalcium Potassium Hydrogen Pyrophosphate Tetrahydrate. The salt $Ca_3KH(P_2O_7)_2.4H_2O$ was prepared from a mixture of 4.4 grams of $K_4P_2O_7$, 6.1 grams of $CaH_2P_2O_7$, and 500 ml. of water that was stirred occasionally at room temperature for about 4 days.

Figure 1. CaH₂P₂O₇

Figure 2. $Ca_3H_2(P_2O_7)_2.4H_2O$

Figure 3. $Ca_2P_2O_7.2H_2O$, monoclinic dimorph

	Table VI. La	ttice Constants of	Crystallin	e Pyrophe	osphates		
	Crystal	Probable		Lattice	Constants		Density
Unit-Cell Content	System	Space Group	a	Ь	с	β	(X-Ray)
$\begin{array}{l} 2[Ca_2P_2O_7.2H_2O] \\ 4[Ca_2P_2O_7.4H_2O] \\ 2[Ca_3(NH_4)_2(P_2O_7)_2.6H_2O] \\ 2[Ca_5(NH_4,K)_2(P_2O_7)_3.6H_2O] \end{array}$	Triclinic Monoclinic Monoclinic Hexagonal	$egin{array}{llllllllllllllllllllllllllllllllllll$	$6.70 \\ 6.01 \\ 7.67 \\ 11.88$	7.38 25.0 11.51	$\begin{array}{r} 8.31 \\ 6.86 \\ 11.00 \\ 9.83 \end{array}$	102 ° 48 ′ ^a 109 ° 54 ′ 92 ° 28 ′	2.51 2.22 2.08 2.38 (NH ₄) 2.50 (K)
$ \begin{split} & 8 [\text{CaNH}_4\text{HP}_2\text{O}_7] \\ & 4 [\text{Ca}(\text{NH}_4,\text{K})_2\text{H}_4(\text{P}_2\text{O}_7)_2] \\ & {}^a \alpha = 85^\circ 2'; \ \gamma = 107^\circ 23'. \end{split} $	Monoclinic Monoclinic	$C_{2h^5} - P2_1/n \\ C_{2h^6} - C2/c$	10.57 7.17	17.56 19.99	7.27 9.33	90°38′ 102°52′	2.28 2.17 (NH ₄)

Figure 4. Ca₂P₂O₇.2H₂O, triclinic dimorph

Much larger crystals that were suitable for single-crystal x-ray studies were formed when 1 gram of CaH₂P₂O₇ was added to 100 ml. of 0.5M KCl solution and the mixture was allowed to stand at room temperature for a month, but the product was mixed with a small amount of CaKHP₂O₇. Ca₃KH(P₂O₇)₂.4H₂O is relatively insoluble in water.

Discussion

The chemical compositions of typical preparations of each of the pyrophosphates are shown in Tables I, II, and III. The morphological and optical properties are listed in Table IV, the powder x-ray diffraction data are shown in Table V, and the lattice constants obtained from single-crystal x-ray studies of some of the salts are given in Table VI. The x-ray data in Table V served to establish the isotypism between certain pairs of ammonium and potassium salts that was indicated by the chemical compositions and morphological properties of those salts. The single-crystal x-ray data in Table VI not only established definitely the crystal species under examination, but also gave the unit-cell contents and so confirmed the empirical formula assigned to the

	Ca	omposition,	Moles/Mole P2O5		
Method of Preparation	CaO	P ₂ O ₅	H ₂ O (diff.)	CaO	Hydrate H ₂ O
Crystallized from coacervate ^a	29.38 29.52 29.20 30.71	52.98 52.91 53.13 52.37	17.74 17.57 17.67 16.92	1.404 1.412 1.391 1.484	2.042 2.028 2.011 2.030
Hydrolysis of CaH ₂ P ₂ O ₇ in water ^b for few hours for few hours for 5 months for 5 months	29.94 29.68 29.75 29.67	53.08 53.07 53.04 52.97	16.98 17.25 17.21 17.36	1.428 1.416 1.420 1.418	1.948 1.977 1.977 2.000
$\begin{array}{l} \text{Hydrolysis of}_{*} \text{CaH}_{2}\text{P}_{2}\text{O}_{7} \text{ in} \\ 0.2M \text{ CaCl}_{2} \\ 0.5M \text{ CaCl}_{2} \\ 1.0M \text{ CaCl}_{2} \end{array}$	29.69 29.53 29.50	52.79 52.92 52.71	17.52 17.54 17.59	1.424 1.412 1.417	2.039 2.023 2.046
Stoichiometric	31.03	52.36	16.61	1.500	2.000

11 months. Method described in text.

compound. Photomicrographs of four calcium pyrophosphates are shown in Figures 1 to 4.

Several hydrated calcium pyrophosphates have been reported previously (2, 7, 10) but the descriptions of the products are limited mainly to their chemical compositions. There is little information on the crystallographic properties and x-ray patterns of the products.

Dubost (7) suspected, but did not demonstrate, the dimorphism of Ca_2 - $P_2O_7.2H_2O$. Dimorphs of both di- and tetrahydrated calcium pyrophosphate were prepared and characterized.

Many of the calcium pyrophosphates described in the literature were prepared from Na₄P₂O₇ and CaCl₂. In attempts to repeat the preparations, mixtures rather than single-phase precipitates were often obtained. This may explain the reported existence of a trihydrate of calcium pyrophosphate (4), for precipitates were obtained that were mixtures of Ca₂P₂O₇.2H₂O and Ca₂P₂O₇.-4H₂O, but there was no evidence of a trihydrate. In some preparations, crystals were obtained of CaNa₂P₂O₇.4H₂O, which has apparent analogs in both the ammonium and potassium systems. The

sodium system apparently behaves much like the ammonium and potassium systems, and published methods for the preparation of calcium pyrophosphates are not sufficiently detailed to ensure preparation of single-phase precipitates.

In the development of methods for the preparation of calcium ammonium and calcium potassium pyrophosphates, formation of metastable compounds and subsequent transformation of those into stable compounds showed that time of contact of a precipitate with its mother liquor was often an important factor in the identity and purity of the product.

The chemical compositions of the salt designated as Ca₃H₂(P₂C₇)₂.4H₂O consistently had mole ratios CaO:P2O5 significantly less than 1.5, even when the preparations were made in the presence of relatively large amounts of calcium ions. As shown in Table VII, different methods of preparation yielded the same crystalline compound.

Pahl (12) assigned the formula Ca7H6-(P2C7)5.10H2O to a product he obtained from a solution of calcium pyrophosphate (prepared from Na₄P₂O₇ and CaCl₂) in hydrochloric acid. His method of preparation yielded the compound designated Ca₃H₂(P₂O₇)₂.4H₂O. Pahl's for-

VOL. 11, NO. 3, MAY-JUNE 1963

221

mula is a quintupling, whereas the designated formula is a doubling, of the average of the compositions of many preparations, Ca_{1.4}H_{1.2}P₂O₇.2H₂O, but structural considerations indicate that a compound with Pahl's formula would have either an unusually large unit cell or an inordinately high density. Van Wazer (13) has suggested that the variations in the reported compositions of this compound indicate that the material is a solid solution, but results of x-ray examinations rule out this possibility.

Boullé and Dubost (4) describe as "calcium pyrophosphate- α " a preparation with the empirical formula Ca2.74- $H_{2,52}(P_2O_7)_2.2H_2O$ and with an x-ray pattern very similar to that of the compound designated $Ca_3H_2(P_2O_7)_2.4H_2O.$ Boullé and Dubost concluded that their product was a double salt with the composition $2CaH_2P_2O_7$. $Ca_2P_2O_7$. $3H_2O$ or $Ca_4H_4(P_2O_7)_3.3H_2O.$

All the preparations listed in Table VII are essentially identical optically, morphologically, and in x-ray pattern. These preparations then must represent a single crystallographic species that is unaltered structurally by small changes in composition. The assigned formula is based on the supposition that a small deficiency in calcium can be compensated by substitution of hydrogen in a lattice in which the packing is dominated by phosphorus-oxygen tetrahedra.

Weissenberg single-crystal studies were made to establish the correct empirical

formula. The study was complicated by the lamellar twinning that the crystals invariably displayed-the polysynthetic twinning occurs on the tabular (100) plane, which is also the composition plane, and the crystals frequently have such a hyperfine structure that the twinning is very difficult to detect optically. Because of the twinning, the x-ray results yielded two possible sets of cell constants. The volumes of the two mirror-image unit cells are identical, however, and each cell accommodates precisely one formula weight of the composition $Ca_3H_2(P_2O_7)_2$. $4H_2O_2$. The computed cell density is 2.46, which agrees reasonably well with the density, 2.41, calculated from the refractive indices and chemical composition. The tentative results of the Weissenberg study support the empirical formula $Ca_{3}H_{2}(P_{2}O_{7})_{2}.4H_{2}O.$

In the region of composition in which $Ca_{3}H_{2}(P_{2}O_{7})_{2}$, $4H_{2}O$ appears at room temperature, a lower hydrate with otherwise the same composition, Ca₃H₂- $(P_2O_7)_2$ $H_2O,$ appears at 50° to 75° C. The monohydrate has higher crystal symmetry than the tetrahydrate and crystallizes in well-formed, untwinned units. The mole ratio $CaO_{2}P_{2}O_{5}$ in the monohydrate is consistently close to 1.50. The lower mole ratios CaO:P₂O₅ in the tetrahydrate probably result from lattice defects caused by hyperfine polysynthetic twinning that is shown by nearly all the preparations of the tetrahydrate.

Literature Cited

- (1) Bale, W. F., Bonner, J. F., Hodge, H. C., Adler, H., Wreath, A. R., Bell, R., Ind. Eng. Chem. Anal. Ed. 17, 491 (1945).
- (2) Bartholomew, R. P., Jacob, K. D., J. Assoc. Offic. Agr. Chemists 16, 598 (1933).
- (3) Bassett, H., J. Chem. Soc. 1958, 2949. (4) Boullé, A., Dubost, M. P., Compt. rend. 247, 1864 (1958).
- (5) Brown, E. H., Lehr, J. R., Smith,
 J. P., Brown, W. E., Frazier, A. W.,
 J. Phys. Chem. 61, 1669 (1957).
- (6) Ibid., 62, 366 (1958).
 (7) Dubost, M. P., Bull. Soc. Chim.
- France **1959**, 810. (8) Gee, A., Deitz, V. R., Anal. Chem.
- **25,** 1320 (1953). (9) Hill, W. L., Hendricks, S. B., Fox, E. J., Cady, J. G., Ind. Eng. Chem. 39, 1667 (1947).
- (10) Hill, W. L., Reynolds, D. S., Hendricks, S. B., Jacob, K. D., J. Assoc. Offic. Agr. Chemists 28, 105 (1945).
- (11) Larsen, E. S., Berman, H., U. S. Geol. Surv. Bull. 848 (1943).
- (12) Pahl, C. N., Kgl. Sven. Vetenskaps. ad. Akad. Handl. Övers. 58, No. 2, 166 (1901).
- (13) Van Wazer, J. R., "Phosphorus and Its Compounds," p. 630, Interscience, New York, 1958.
- (14) Willard, H. H., Boldyreff, A. W., J. Am. Chem. Soc. 52, 1888 (1920).

Received for review May 21, 1962. Accepted September 4, 1962. Division of Fertilizer and Soil Chemistry, 140th Meeting, ACS, Chicago, September 1961.

DEFOLIANT METABOLISM

The Fate of Cyanamide in Cotton

YANAMIDE is a colorless, crystalline \checkmark solid which melts at 41° to 42° C. and is soluble in water, alcohol, and ether. It polymerizes at temperatures above its melting point and will react with weak acids to form salts and with strong acids to form urea.

Calcium cyanamide was patented in 1910 for use as a fertilizer (9) and was used in Germany before 1913 to kill mustard weeds in oats. Calcium cyanamide was first noted to induce cotton defoliation by Hall and Harrell in 1938 (4), and has since been used widely as a defoliant for cotton, soybeans, and for nursery stock (1).

Previous studies of the metabolism of cyanamide include the work of Hofmann et al. (7) who reported the enzymatic decomposition of cyanamide by an enzyme termed cyanamidase which was extracted from soybeans. He also noted that barley and corn plants cultured with cyanamide-C14 expired part of their carbon dioxide as $C^{14}O_2$.

Later, Hofmann et al. (6) stated that oats, barley, wheat, and rye converted cyanamide to dicyandiamide which could be detected after 2 to 3 days. Alanine, tryptophan, lysine, leucine, phenylalanine, and valine were present in higher concentrations in cyanamidefed plants than in plants fed calcium nitrate as nitrogen source. Both alanine and aspartic acid had C14 activity when plants were fed barium cyanamide-C¹⁴. Alanine displayed the greatest activity.

Latzko (8), in a review article, stated

....

CHARLES S. MILLER and WAYNE C. HALL

Department of Plant Sciences, Texas Agricultural Experiment Station, Texas A & M College, College Station, Tex.

that Rathsack found dicyandiamide, guanidine, and guanyl compounds as intermediary decomposition products of cyanamide. In a previous report of limited distribution (5), the authors have summarized the results of studies conducted with mature, field-grown Deltapine 15 cotton. These plants were sprayed at rates equivalent to 2 ard 4 gallons of 25% concentrate per acre of cyanamide-C¹⁴. Carbon-14, which was originally contained in the cyanamide, was translocated from the sprayed leaves to the seed of developing bolls. Paper chromatographic procedures established that this seed did not contain cyanamide, but the character of the carbon-14 containing products was not established.

This study was initiated to discover